Synchrotron-based infrared Microspectroscopy at NSRRC (TLS BL14)

Std. No.:
Name:

Exercise

1. Which of the optical components of the Michaelson interferometer.
(A) Beam Splitter (B) IR source (C) Fixed and Moving mirror (D) Above all.

Answer:
2. Calculate the displacement for the moving mirror in an FTIR spectrometer to resolve the $4.0 \mathrm{~cm}^{-1}$ difference between two adjacent peaks?
(A) 0.625 cm (B) 0.125 cm (C) 0.25 cm (D) 0.5 cm

Answer:
3. Calculate the frequency range of a modulated signal from a Michaelson interferometer with a mirror velocity of $0.2 \mathrm{~cm} / \mathrm{s}$ for infrared radiation of $25 \mu \mathrm{~m}$?
(A) 1.6 kHz (B) 160 Hz (C) 16 Hz (D) 1.6 Hz

Answer:
4. Which of the working principle of wax physisorption kinetics?
(A) Chemical Similarity (B) Glycan adsorbent (C) Desorption (D) above all. Answer:
5. What is the major concern about the vibrational transition in a molecule?
(A) Covalent Bond (B) Electric field (C) Polarizability (D) Dipole moment of periodical change.
Answer:
6. Following ATR crystals, which has the lowest penetration depth for a sample? (A) Diamond (B) Germanium (C) Zinc Selenide (D) Silicon

Answer:
7. What is the wave number difference of optical retardation for two wavefronts required in the Michaelson interferometer to resolve two adjacent absorption peaks?
(A) 1 (B) 2 (C) 0 (D) 0.5

Answer:
8. The optical purpose for the design of a dual aperture in a confocal infrared microscope, which explains is right?
(A) Upper aperture defines the beam size and shape.
(B) Lower aperture to filter higher-order diffraction.
(C) Dual aperture affecting the resolution
(D) Above all.

Answer:
9. Calculate the diffraction-limit wavele for the incident radiation in the reflection measurement of confocal FT-IR microscopy and the numerical aperture (N.A.) for IR objective and the diameter of confocal aperture is 0.65 and $5.0 \mu \mathrm{~m}$, respectively. (A) 2.6 (B) 5.3 (C) 0.05 (D) $1.22 \mu \mathrm{~m}$

Answer:
10. Which functional group is as follows with characteristic absorption at $1730 \mathrm{~cm}^{-1}$, indicating the presence of a (A) $\mathrm{C}=\mathrm{O}$ (B) $\mathrm{O}-\mathrm{H}(\mathrm{C}) \mathrm{N}-\mathrm{H}(\mathrm{D}) \mathrm{C} \equiv \mathrm{N}$.
Answer:

